Fast Active Set Methods for Online Spike Inference from Calcium Imaging
نویسندگان
چکیده
Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations. Unfortunately, extracting the spike train of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse nonnegative deconvolution problem. Importantly, the algorithm progresses through each time series sequentially from beginning to end, thus enabling real-time online spike inference during the imaging session. Our algorithm is a generalization of the pool adjacent violators algorithm (PAVA) for isotonic regression and inherits its linear-time computational complexity. We gain remarkable increases in processing speed: more than one order of magnitude compared to currently employed state of the art convex solvers relying on interior point methods. Our method can exploit warm starts; therefore optimizing model hyperparameters only requires a handful of passes through the data. The algorithm enables real-time simultaneous deconvolution of O(10) traces of whole-brain zebrafish imaging data on a laptop.
منابع مشابه
Fast active set methods for online deconvolution of calcium imaging data
Johannes Friedrich, Pengcheng Zhou, Liam Paninski Abstract Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse non-negative deconvolution problem. Importantl...
متن کاملFast online deconvolution of calcium imaging data
Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse non-negative deconvolution problem. Importantly, the algorithm 3progresses through each time series seque...
متن کاملInnovative Methodology Fast Nonnegative Deconvolution for Spike Train Inference From Population Calcium Imaging
Vogelstein JT, Packer AM, Machado TA, Sippy T, Babadi B, Yuste R, Paninski L. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J Neurophysiol 104: 3691–3704, 2010. First published June 16, 2010; doi:10.1152/jn.01073.2009. Fluorescent calcium indicators are becoming increasingly popular as a means for observing the spiking activity of large neuronal popul...
متن کاملFast nonnegative deconvolution for spike train inference from population calcium imaging.
Fluorescent calcium indicators are becoming increasingly popular as a means for observing the spiking activity of large neuronal populations. Unfortunately, extracting the spike train of each neuron from a raw fluorescence movie is a nontrivial problem. This work presents a fast nonnegative deconvolution filter to infer the approximately most likely spike train of each neuron, given the fluores...
متن کاملA finite rate of innovation algorithm for fast and accurate spike detection from two-photon calcium imaging.
OBJECTIVE Inferring the times of sequences of action potentials (APs) (spike trains) from neurophysiological data is a key problem in computational neuroscience. The detection of APs from two-photon imaging of calcium signals offers certain advantages over traditional electrophysiological approaches, as up to thousands of spatially and immunohistochemically defined neurons can be recorded simul...
متن کامل